Products related to Quantum:
-
Wildlife in the Anthropocene : Conservation after Nature
Elephants rarely breed in captivity and are not considered domesticated, yet they interact with people regularly and adapt to various environments.Too social and sagacious to be objects, too strange to be human, too captive to truly be wild, but too wild to be domesticated—where do elephants fall in our understanding of nature?In Wildlife in the Anthropocene, Jamie Lorimer argues that the idea of nature as a pure and timeless place characterized by the absence of humans has come to an end.But life goes on. Wildlife inhabits everywhere and is on the move; Lorimer proposes the concept of wildlife as a replacement for nature.Offering a thorough appraisal of the Anthropocene—an era in which human actions affect and influence all life and all systems on our planet— Lorimer unpacks its implications for changing definitions of nature and the politics of wildlife conservation.Wildlife in the Anthropocene examines rewilding, the impacts of wildlife films, human relationships with charismatic species, and urban wildlife.Analyzing scientific papers, policy documents, and popular media, as well as a decade of fieldwork, Lorimer explores the new interconnections between science, politics, and neoliberal capitalism that the Anthropocene demands of wildlife conservation.Imagining conservation in a world where humans are geological actors entangled within and responsible for powerful, unstable, and unpredictable planetary forces, this work nurtures a future environmentalism that is more hopeful and democratic.
Price: 23.99 £ | Shipping*: 3.99 £ -
Foundations of Quantum Mechanics : An Exploration of the Physical Meaning of Quantum Theory
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet.Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations.But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems.This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.
Price: 44.99 £ | Shipping*: 0.00 £ -
Wildlife Conservation
Featuring twenty of the world's most 'at risk' animals, this book teaches young naturalists about conservation programs protect the lives of endangered wild animals from hunters, poachers, illness and other threats.Understanding these threats is balanced with conservation success stories from around the globe to give the reader hope for the future.Clearly written text, maps, quotes and stunning full-page illustrations bring the reality into focus for the reader.
Price: 9.99 £ | Shipping*: 3.99 £ -
Quantum Communication, Quantum Networks, and Quantum Sensing
Quantum Communication, Quantum Networks, and Quantum Sensing represents a self-contained introduction to quantum communication, quantum error-correction, quantum networks, and quantum sensing.It starts with basic concepts from classical detection theory, information theory, and channel coding fundamentals before continuing with basic principles of quantum mechanics including state vectors, operators, density operators, measurements, and dynamics of a quantum system.It continues with fundamental principles of quantum information processing, basic quantum gates, no-cloning and theorem on indistinguishability of arbitrary quantum states.The book then focuses on quantum information theory, quantum detection and Gaussian quantum information theories, and quantum key distribution (QKD).The book then covers quantum error correction codes (QECCs) before introducing quantum networks.The book concludes with quantum sensing and quantum radars, quantum machine learning and fault-tolerant quantum error correction concepts.
Price: 115.00 £ | Shipping*: 0.00 £
-
Is quantum mechanics a subfield of quantum physics?
Yes, quantum mechanics is a subfield of quantum physics. Quantum physics is a broad field that encompasses the study of the behavior of matter and energy at the quantum level, while quantum mechanics specifically focuses on the mathematical framework and principles that describe the behavior of particles and waves at the quantum level. Quantum mechanics is a fundamental theory within the broader field of quantum physics, providing the foundation for understanding the behavior of particles and systems at the quantum scale.
-
What is the difference between quantum physics and quantum mechanics?
Quantum physics is a broad field of study that encompasses the fundamental principles and phenomena of the quantum world, including the behavior of particles at the atomic and subatomic levels. Quantum mechanics, on the other hand, is a specific branch of physics that focuses on the mathematical framework and formalism used to describe the behavior of particles at the quantum level. In other words, quantum physics is the broader study of the quantum world, while quantum mechanics is the specific set of principles and mathematical tools used to understand and describe it.
-
What is the difference between quantum mechanics and quantum physics?
Quantum mechanics and quantum physics are often used interchangeably, but there is a subtle difference between the two terms. Quantum mechanics is a specific branch of physics that deals with the mathematical description of the behavior of particles at the atomic and subatomic levels. On the other hand, quantum physics is a broader term that encompasses the study of the behavior of matter and energy at the quantum level, including quantum mechanics as well as other related fields such as quantum field theory and quantum electrodynamics. In essence, quantum mechanics is a subset of quantum physics, focusing specifically on the mathematical framework for understanding the behavior of particles at the quantum level.
-
Is there a difference between quantum physics and quantum mechanics?
Quantum physics and quantum mechanics are often used interchangeably, but there is a subtle difference between the two. Quantum physics is a broader field that encompasses the study of the behavior of matter and energy at the quantum level, including quantum mechanics. Quantum mechanics, on the other hand, specifically refers to the mathematical framework and principles that describe the behavior of particles at the quantum level. In essence, quantum mechanics is a subset of quantum physics, focusing on the mathematical and theoretical aspects of quantum phenomena.
Similar search terms for Quantum:
-
The Physics of Quantum Information : Quantum Cryptography, Quantum Teleportation, Quantum Computation
Information is stored, transmitted and processed by physical means.Thus, the concept of information and computation can be formulated in the con text of a physical theory and the study of information requires ultimately experimentation.This sentence, innocuous at first glance, leads to non-trivial consequences.Following Moore's law, about every 18 months microprocessors double their speed and, it seems, the only way to make them significantly faster is to make them smaller.In the not too distant future they will reach the point where the logic gates are so small that they consist of only a few atoms each.Then quantum-mechanical effects will become important.Thus, if computers are to continue to become faster (and therefore smaller), new, quantum technology must replace or supplement what we have now.But it turns out that such technology can offer much more than smaller and faster microprocessors.Several recent theoretical results have shown that quantum effects may be harnessed to provide qualitatively new modes of communication and computation, in some cases much more powerful than their classical counterparts.This new quantum technology is being born in many laboratories.The last two decades have witnessed experiments in which single quantum particles of different kinds were controlled and manipulated with an unprecedented preci sion.Many "gedanken" experiments, so famous in the early days of quantum mechanics, have been carried out.
Price: 199.99 £ | Shipping*: 0.00 £ -
Wildlife Conservation Diploma Course
This course explores the importance of wildlife conservation and the strategies used to create and maintain a successful wildlife conservation programme.
Price: 127 € | Shipping*: 0.00 € -
Fundamentals Of Quantum Materials: A Practical Guide To Synthesis And Exploration
Despite a long tradition of sophisticated, creative materials synthesis among quantum materials researchers, a sense of broader community has been lacking.In initiating the Fundamentals of Quantum Materials Winter School held annually at the University of Maryland, we wanted to bring together the next generation of growers to learn techniques and pointers directly from senior scientists, and it turns out that we were not alone.The enthusiasm from both students and teachers has been both gratifying and invigorating.Four schools later, we can confidently say that physicists, chemists, and materials scientists, experimentalists and theorists alike, all want to know how to make a good sample.With this in mind, we asked our lecturers to record their most important ideas and share their expertise with a broader audience.This resource is a compilation of fundamental and practical guides on the modern methods of materials synthesis utilized by these experts.We hope that you enjoy reading their essential guidance and state-of-the-art techniques as you explore the Fundamentals of Quantum Materials.
Price: 90.00 £ | Shipping*: 0.00 £ -
Conservation Physiology : Applications for Wildlife Conservation and Management
Conservation physiology is a rapidly expanding, multidisciplinary field that utilizes physiological knowledge and tools to understand and solve conservation challenges.This novel text provides the first consolidated overview of its scope, purpose, and applications, with a focus on wildlife.It outlines the major avenues and advances by which conservation physiology is contributing to the monitoring, management, and restoration of wild animal populations.This book also defines opportunities for further growth in the field and identifies critical areas for future investigation.By using a series of global case studies, contributors illustrate how approaches from the conservation physiology toolbox can tackle a diverse range of conservation issues including the monitoring of environmental stress, predicting the impact of climate change, understanding disease dynamics, improving captive breeding, and reducing human-wildlife conflict.Moreover, by acting as practical road maps across a diversity of sub-disciplines, these case studies serve to increase the accessibility of this discipline to new researchers.The diversity of taxa, biological scales, and ecosystems highlighted illustrate the far-reaching nature of the discipline and allow readers to gain an appreciation for the purpose, value, applicability, and status of the field of conservation physiology. Conservation Physiology is an accessible supplementary textbook suitable for graduate students, researchers, and practitioners in the fields of conservation science, eco-physiology, evolutionary and comparative physiology, natural resources management, ecosystem health, veterinary medicine, animal physiology, and ecology.
Price: 41.99 £ | Shipping*: 0.00 £
-
What is quantum entanglement?
Quantum entanglement is a phenomenon in quantum physics where two or more particles become connected in such a way that the state of one particle is dependent on the state of the other, regardless of the distance between them. This means that measuring the state of one particle instantly determines the state of the other, even if they are light-years apart. This mysterious connection defies classical physics and has been described by Albert Einstein as "spooky action at a distance." Quantum entanglement is a key principle in quantum mechanics and has potential applications in quantum computing and cryptography.
-
What is quantum philosophy?
Quantum philosophy is a branch of philosophy that explores the implications of quantum theory for our understanding of reality, knowledge, and consciousness. It examines how the principles of quantum mechanics challenge traditional philosophical concepts such as causality, determinism, and objectivity. Quantum philosophy also delves into the nature of observation and measurement, as well as the relationship between the observer and the observed. Overall, quantum philosophy seeks to bridge the gap between the physical world described by quantum mechanics and our philosophical understanding of reality.
-
What are quantum energies?
Quantum energies refer to the energy levels associated with the behavior of particles at the quantum level. In quantum mechanics, particles such as electrons can exist in discrete energy states, and the energy of these states is quantized, meaning it can only take on certain specific values. These energy levels play a crucial role in determining the behavior and properties of particles at the quantum scale, and are fundamental to understanding the behavior of atoms and molecules. Quantum energies are also important in fields such as quantum computing and quantum cryptography.
-
What are quantum fields?
Quantum fields are fundamental entities in quantum field theory that describe the behavior of particles and forces in the universe. They are fields that permeate all of space and time, and their interactions give rise to the fundamental forces of nature, such as electromagnetism and the strong and weak nuclear forces. Quantum fields are characterized by their quantum nature, meaning that they can fluctuate and create and destroy particles in accordance with the principles of quantum mechanics. These fields are essential for understanding the behavior of particles at the smallest scales and are a key component of our current understanding of the fundamental forces and particles in the universe.
* All prices are inclusive of VAT and, if applicable, plus shipping costs. The offer information is based on the details provided by the respective shop and is updated through automated processes. Real-time updates do not occur, so deviations can occur in individual cases.